A lower bound on tunnel number degeneration

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric lower bound on Grad's number

In this note we provide a new geometric lower bound on the so-called Grad's number of a domain Ω in terms of how far Ω is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.

متن کامل

Lower bound on the minus-domination number

For a graph G, a function f : V (G) ! f?1; 0; +1g is called a minus-domination function of G if the closed neighborhood of each vertex of G contains strictly more

متن کامل

A lower bound on the independence number of a graph

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.

متن کامل

Lower Bound of Newton Number

We show a lower estimate of the Milnor number of an isolated hypersurface singularity, via its Newton number. We also obtain analogous estimate of the Milnor number of an isolated singularity of a similar complete intersection variety. Introduction We study the Newton number of a polyhedron in order to calculate the Milnor number of an isolated singularity defined by an analytic mapping. Sectio...

متن کامل

A lower bound on the chromatic number of Mycielski graphs

In this work we give a new lower bound on the chromatic number of a Mycielski graph Mi. The result exploits a mapping between the coloring problem and a multiprocessor task scheduling problem. The tightness of the bound is proved for i = 1; : : : ; 8. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2016

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2016.16.1279